The innumerable inventions of the nineteenth century have not only paved the way for the industrialization of production, but also for the technicalization of culture that characterizes our lifeworld today. The invention of the technological media of telegraphy, photography, the phonograph, and film constitutes a special case of industrialization that Karl Marx, for example, hardly took into account in his Capital of 1867. Industrialization's dynamism lies in its ability to use machines to produce goods and deliver services more quickly and economically than those produced or delivered manually. This is why steam-powered looms replaced hand looms and trains replaced mail coaches. Technical media, on the other hand, engender a number of previously unknown phenomena that have few precedents in the history of humankind. By the same token, media devices take over capabilities that had once been the sole preserve of humankind, but give them a new dimension. Technologies of storage and transmission fulfill functions of human memory and direct dialogue, but in doing so, their mechanistic capacities, precision, speed, and range leave all human prototypes far behind. Thus began the technicalization and simultaneous industrialization of perception and communication that now penetrates the deepest spheres of our private lives.

Even today, storage and transmission remain the basic elements of all media. Their origins lie in the two original media: electrical telegraphy and chemical-optical photography. Almost all subsequent media technologies can be derived from combinations of these two, all the way to television and the Internet. The conditions for the emergence of these original media were very diverse. Transmissions via telegraphy or later by telephone required a complex system of devices connected into a network, which just like railway or gas networks could only be constructed on the initiative of the government or of industry.\(^1\) Storage, on the other hand, was initially based on individual devices such as the camera or the phonograph. These storage media imitated human organs: a camera the lens of the eye, and the phonograph an ear-drum. Yet even telemedia contained anthropomorphic elements, like the signal arms of the optical telegraph, the ear-piece of the

1 The age of communication networks constructed by individuals first began with amateur radio enthusiasts. Cf. Dieter Daniels, Kunst als Sendung: Von der Telegrafie zum Internet (Munich, 2002), pp. 131ff.

2 This suggestion served as a source of inspiration for Paul DeMarinis's installation The Messenger (1998), and he empathically described it as follows: "Catalan scientist Don Francisco Salva d' la Camplita . . . uses a separate wire for each letter of the alphabet, a Leyden jar to transmit a spark across these wires, but peculiarly, instead of the pith ball electroscope and indicators, Salva specifies a number of people, one for each wire. Upon receiving a visible shock, each of these people, presumably servants, was to call out the name of the letter of the alphabet to which he corresponded. A twenty-seventh person, presumably literate, was to write down the message so shockingly spelled out. This is probably the system that Salva operated between Madrid and Aranjuez in 1798. . . . The scene of a hall filled with the sights, whispers and means of humanity being shocked into literacy seems an appropriate and emblematic image for the events of 1798." http://www.well.com/~demarini/messenger.html (accessed September 7, 2006). Cf. C. MacKehnie Jarvis, "The Origin and Development of the Electric Telegraph," in The Electric Telegraph: An Historical Anthology, ed. G. Shiers and Arno Press (New York, 1977).
telephone, or even the idea of directly employing a series of humans as receivers for electrical telegraphy signals. This anthropomorphic character allows media devices to affect the senses, and therefore they and the phenomena they produce have, implicitly or explicitly, an aesthetic dimension. They have a fascinating relationship with the arts, which had previously embodied and symbolically intensified these human sensory functions in the form of painting, music, or poetry.

This relationship between media and the arts shall be examined in the following in the light of two representative cases. The French painter of theater sets and dioramas, Louis-Jacques Mandé Daguerre, became famous in 1839 as the inventor of photography. Concurrently, the American painter of portraits and historical motifs, Samuel Finley Breese Morse, developed the system of electrical telegraphy that bears his name. These two artist-inventors with their individual biographies exemplify the substitution of media for the arts. Almost as if in a play, the dramatic transformation of these two protagonists sums up a development that pervaded the entire nineteenth century. Part two of this text outlines how the artist-inventor relation is inverted in the second half of the nineteenth century. In public opinion, the inventor more and more replaced the artist as the prodigal genius, but his popular mythology was modeled on the traditional artist type; Thomas Alva Edison and Nikola Tesla provide two contrasting examples here.

PART I: MEDIA AS A CONTINUATION OF ART BY OTHER MEANS

SAMUEL F. B. MORSE: AN AMERICAN IN PARIS

As an American hungry for learning, Samuel Morse went on an educational tour of Europe from 1829 to 1832, concluding his travels with a visit to the Louvre in Paris. Throughout his journey, he produced numerous copies of works by the Old Masters. Most of these had been commissioned

and paid for in advance by American collectors in order to enable Morse to make his voyage. Yet Morse's ambitions went further: he spent many months in the rooms of the Louvre working on his own behalf on the crowning conclusion of his studies, the *Gallery of the Louvre* (figs. 1, 2). This painting, with the formidable dimensions of 1.80 x 2.70 meters, shows an arrangement of thirty-eight masterpieces in the Louvre's Salon Carré. This arrangement never actually existed; the picture was aimed at an American public for whom Morse wanted to summarize the world-famous museum's highlights in one painting. He therefore used a camera obscura to create a spatial montage, whereby he did not hesitate to make considerable adaptations in dimensions and proportions. With his selections and combinations in this encyclopedic work, he was primarily pursuing politico-educational goals. The son of a Calvinist minister and a devoted American patriot, Morse had undertaken the missionary task of awakening the United States to art in order to encourage a strong and highly moral American artistic style. This was intended to throw off the decadent, feudal, and Catholicizing or even voluptuous ballast of the grand European tradition and take the lead in world culture with a new ideal in line with republicanism and Protestantism. Even during his studies in London, the twenty-three-year-old hoped that "the palm of painting still rests with America and is, in all probability, destined to remain with us." He also pursued this goal as the founder and long-standing president of the National Academy of Design, which among other things understood itself as advocating against the dominance of European artists on the American art market. His own, highest aspiration was history painting. As the culmination of his career, he hoped to receive a commission for one of the paintings in the Capitol Dome in Washington, the decoration of which was just being discussed. His educational voyage to Europe was also intended as preparation for this (fig. 3).

Yet in America, which without public museums or noteworthy masterpieces was still cut off from European art at the time, there was initially a great need to catch up in terms of visual education. Morse believed that the only remedy to this would be to import art: "All we wish is a taste in the country. . . . In order to create taste, however, pictures, first-rate pictures, must be introduced into the country." Morse was not alone in this line of thought. Over the next hundred years, a museum environment equal to that of Europe would be created in the United States, largely through private initiatives following this creed.

5. Cf. in this regard the analysis by Stein 1991 (see note 4), p. 175ff.
7. Ibid., p. 27.
The first attempt in this direction was Morse's personal Musée imaginaire embodied in his Gallery of the Louvre. In the center of the picture, emphasized by the sharp perspective of the view into the Grand Gallery, Morse staged his programmatic appearance as the teacher of a group of eager young artists, most of whom can be identified as American and who thus represent the real audience of his personal mission. He was "turning the Louvre into the ideal American classroom," as one interpreter wrote.

Even during his travels through Europe, Morse declared: "America is the stronghold of the popular principle, Europe of the despotic. These cannot unite." Later he also ran for mayor of New York on a similar political platform and composed nationalistic, anti-Catholic pamphlets. With the Gallery of the Louvre, Morse was thus interested in the ideologically orchestrated and didactically dispensed importation of European art, always with the goal of future American superiority.

Artistically speaking, however, Morse's three-year journey to Europe was a failure. Back in New York, he rented an exhibition space on Broadway in order to present, along with an explanatory catalogue, the Gallery of the Louvre to a wide audience, and he shunned no expense or risk to spread his message to everyone of America's awakening to art. Thus his disappointment was all the greater when, despite euphoric reactions from the press, the crowds he had hoped for failed to appear and only between five and twenty visitors showed up daily, so that after two months the rent for the exhibition space had not even been covered. When Congress finally also passed him by in awarding the commission to paint the Capitol, Morse resigned from his attempts to awaken America to art. He desperately wished "that every picture I ever painted was destroyed. I have no wish to be remembered as a painter, for I never was a painter: my ideal of that profession was perhaps too exalted."

Yet in other respects, the weeks spent working on his painting in the Louvre would prove to be crucial for Morse. During this time, he visited the optical telegraph station that had been located on the building since the French Revolution, and its function was explained to him. According to James Fenimore Cooper, an American novelist who was his close friend at the time, Morse excitedly discussed telegraphy with him in Paris.

Yet not until Morse's return voyage to America on board a sailing ship is the spark of the idea for electrical telegraphy said to have flared into life through conversations with fellow passengers with knowledge of electricity. For back then, Morse still had absolutely no knowledge about electrical engineering. He also did not know that other inventors were working on similar ideas at the same time. The situation seems markedly symbolic. At that time, even the most streamlined steamers and therefore all messages required at least two weeks to cross the Atlantic. Thus the six-week ocean voyage on a sailing ship was a logical framework for Morse's numerous sketches and designs for electrical telegraphy—the medium that, with the first transatlantic cable, would shorten the message transmission time for the same distance to seconds. Also transported from Europe to America on board this ship was the Gallery of the Louvre, still unfinished and destined to be the last large work by Morse in his career as a painter. For Morse, this passage from Europe to America was the beginning of his transformation from artist to inventor, and the consequences changed the relationship between the two continents more lasting than any art. Morse's remarks about telegraphy sound just as missionary as his remarks about painting. This Calvinist, who was well versed in the Bible, did not shy away from comparing the electrically transmitted code with "the mythological voice of Jehovah." In 1844, when after ten years of groundwork the first American telegraph line finally went into operation, the Bible provided the accompanying text. As every American schoolchild knows, the first message was "What hath God wrought!" The paper tape of this message is now exhibited in a display case at the Smithsonian Institution, like a Torah roll for a new era.

Connecting the Old and New worlds proved to be just as much a motif in Morse's career as an inventor as it was in his career as an artist. Although Morse's importation of European cultural goods to the United States remained unfruitful for American culture, with telegraphy he succeeded in the other direction by exporting American technical know-how to Europe. When Morse died a wealthy and famous man in 1872, a million kilometers of telegraph lines worldwide were in operation according to his system. Morse's telegraphy system owed its sweeping success not just to its technical basis, but above all to favorable political and economic conditions in America. Congress provided initial financing for the first test line between Washington, DC, and Baltimore in the year 1844. One year later, in order to seek his fortune from then on as a businessman instead of as a public servant, Morse bought this line back from the government using venture capital to form a private corporation. This decision had consequences which could hardly have been suspected at the time, for to this very day, the American government has left telecommunications development up to free-market forces.

8 All the figures were first painted into the work back in the United States and can therefore be traced back to American models, most of whom can also be identified, Klaus 1988 (see note 1), pp. 128 ff.
9 Staël 1989 (see note 4), p. 194.
10 Ibid., p. 166.
11 Klaus 1988 (see note 4), p. 120.
12 Staël (see note 4), p. 199.
13 Ibid., p. 208.
14 It is doubtful whether Morse had already discussed electrical telegraphy with Cooper, as the latter later claimed; cf. Volker Aschaff, Geschichte der Nachrichtentechnik, vol. 2, Nachrichtentechnische Entwicklungen in der ersten Hälfte des 19. Jahrhunderts (Berlin, 1995), p. 88. In Gallery of the Louvre, Cooper, author of The Leatherstocking Tales, is depicted at the rear left with his daughter.
15 Immediately after the failed exhibition of Gallery of the Louvre, Morse stated that his attitude had changed: "I have changed my plans with relation to this picture and to art generally," and "I have need of funds to prosecute my new plans" (Staël 1989 (see note 4), p. 202). Yet the decisive blow was that the commission for a painting in the Capitol Rotunda in Washington, DC, so ardently desired by Morse for many years, was finally awarded to Congress in 1837 to another painter (Carlton Mabee, Samuel F. B. Morse, seine Biographie, ed. Christian Trauner [Basel et al., 1911], p. 1250; English original): The American Leonardo: A Life of Samuel F. B. Morse (New York, 1962). Ironically, Morse's first presentation of his telegraph apparatus to the American President, members of the Cabinet, and representatives of Congress took place only half a year later in precisely that location where his desires as a painter had remained unfulfilled (in the Capitol (Klaus 1998 [see note 4], p. 154), Patrice Fitzky, Tele-Geschichte der modernen Kommunikation (Frankfurt am Main and New York, 1946), p. 47.
17 Old Testament, Fourth Book of Moses (Numbers) 23:23; cf. Lewis Cooke, The Telegraph: A History of Morse's Invention and his Predecessors in the United States (Jefferson, 1933), p. 32. The quote was chosen at Morse's request by Anna Helmuth, the daughter of a family with whom Morse was befriended.
At a price of one cent for four words in the United States, telegraphy thus became a means of communication for everyone. However, in most European countries—with the exception of England—telegraphy was introduced as a state-owned institution to be used only by the government and the military, and telephone, radio, and television continued to remain in state hands for some time to come.

All initial doubt about whether any demand for this type of medium would actually come forth was quickly overcome by its immense growth rate. By 1850, there were already 12,000 miles of telegraph lines. Two years later, this number had increased to 22,000 miles, and in 1866, with 22,000 telegraph stations Western Union became the first nationally operating American company to offer service throughout America.\(^{18}\) The French Revolution's utopian goal of placing telegraphy in the service of national unity became reality in the development of the American national consciousness after the American Revolution.\(^{18}\)

Invigorated by this first economic boom in the history of telemedia, the strength of American capital soon began to press for expansion beyond the country's borders. A crucial factor in this was the telegraphic link between America and Europe. As early as 1842, even before he had built the first overland telegraphy line, Morse outlined a scheme for a transatlantic cable, soon thereafter making a corresponding submission to Congress\(^{19}\) (fig. \(4\)). Twenty-five years later, the moment finally arrived, and in 1865–66, after several dramatically failed attempts, a successful connection was finally built that has not been severed since. All efforts to create this connection came from the American side. Morse was still at least organizationally and financially involved in the realization of his idea, which from today's point of view marked the beginnings of globalization through media. Together with the first transatlantic cable connection, the Morse alphabet, still in use today, was also delineated at the International Telegraph Convention in Berlin in 1865. Against bitter competition from comparable German and British developments, Morse's system therefore gradually conquered all of Europe.

This also heralded the victory of the privately held American media industry over the European system of publicly held media, a contest that was only ultimately decided in the 1990s through the liberalization of the telecommunication market. Private satellite television and the Internet brought about the end of the last national protectionist measures set up on the pretext of protecting culture and the fall of Europe's state-entrenched media strongholds, which then had to adapt, for better or for worse, to the commercial American model.

MEDIA TECHNOLOGY REPLACES THE HUMAN HAND

In the field of electrical telegraphy, Morse had numerous competitors whose technical skills and knowledge of electrophysics were far superior to his, such as the German physicists Carl Gauss and Wilhelm Weber, their British colleagues Charles Wheatstone and William Cooke, and the German-Russian pioneer Schilling von Carstatt. Looking back today at the history of technology, it can be said that there was no single inventor of electrical telegraphy but that just as with photography, ideas arose and devices were created with astounding simultaneity in several places throughout the world.\(^{20}\)

Morse's success has always been attributed primarily to economic and political factors. Yet the fact that he—as a complete layperson in the field of electrical engineering—had any chance with his system at all against technically far more experienced scientists and initially without any financial support is due to his greatest personal contribution to the development of electrical telegraphy. This is, as we shall see, directly linked to his abandoned career as a painter. Morse developed the first registering telegraph, while almost all of his competitors were working on electrifying optical telegraphy (figs. 5, 6).

In optical telegraphy, every step of the transmission required human participation: at its stations, the signal was deployed on the semaphore mast by hand, read via telescope by the guard from the next station, and was finally written down by hand and delivered to the recipient at the end of the line. If secret messages were transmitted in code unknown even to the telegraphers, then these people worked just like a technical relay, without understanding the message's content. The sources of

18 Rickey 1994 (see note 151), pp. 71, 77; cf. also pp. 75ff. on development in England.

transmission error were comparably great for optical telegraphy, extending from poor weather to human error. In media-technology terms, this is comparable to the dissemination of writing before the invention of letterpress printing: transmission through copying out by hand, which likewise led to self-perpetuating errors. The electrical pointer telegraphy that developed out of optical telegraphy did manage to overcome distance by means of an electrical signal, but as before, it was read at the moment of transmission and then written down by hand.

In contrast to the numerous designs by other inventors for the electrical transmission of optical signals, Morse incontestably be credited with pursuing right from the beginning the idea of a telegraph that wrote automatically.22 He thus solved a problem that had plagued all optical signaling systems from ancient times to the French Revolution: it became possible for the first time to receive a message without the need of human attention and transcription—Morse's device wrote by itself.23

This method corresponds to that which photography since Daguerre had provided compared to the camera obscura: the photographic image now drew itself. It no longer required human intervention and perception to go from the eye through the hand and onto paper (figs. 17, 18). Now, only the appropriate placement of an apparatus in front of the subject to be depicted was required, and the actual image was then created without human involvement. With this in mind, Daguerre's competitor Henry Fox Talbot coined the term "pencil of nature," and François Arago, in his speech before the Académie française to announce the invention of photography, correspondingly pointed out: "It does not assume any knowledge of drawing, nor does it demand any particular manual skill."24

The inventions of Daguerre and Morse thus share a fundamental feature: instruments initially intended only as tools for extending perception, which in their respective applications had required the human hand to record their results, were transformed to create self-writing and self-drawing media. To put it another way: the "performative" media of optical telegraphy and the camera obscura, both of which were dependent upon human actions, became recording or storage media through Morse's and Daguerre's inventions.

This epochal transformation becomes even clearer when compared to the previous techniques of reproducing documents and images. While it had been possible to use letterpress printing to reproduce existing manuscripts since the time of Gutenberg, the recording telegraph began the

The origin of mechanical writing

This replacement of manually produced writing and images by automated processes marks the beginning of the final rupture between the arts and media technology. The origin of this rupture, however, can be traced back to a transfer of art motifs into media. In the cases of Morse and Daguerre, their individual biographies reveal both the continuity of their personal goals and ideals but also a radical shift in their roles. The switch from artist to inventor was final, as neither of them ever again took up their artistic work. These two artists-turned-media-inventors were the first protagonists in the comprehensive process of substitution, in which media took over, in almost all areas of life, functions that had formerly been considered the domain of art.25

Thus besides personal goals, very concrete remnants of art were also transferred to the media. The justification for these remnants may have been pragmatic for Morse, yet they are potentially highly symbolic, for his artistic career left clear traces on the first prototypes of the recording telegraph of 1835 (fig. 7). The entire construction was based on a canvas stretcher frame on which a pencil, remotely controlled by an electromagnet, marked or wrote on a ribbon of paper moved by a clock mechanism.26 As a type of "remote draftsman," this device can certainly be recognized as stemming from the tools of the artist, although its powers of articulation were reduced to a simple jagged line.

Art had been released from its substrate and thereby also from its message. Only an empty frame remained, and this painting implement had now been adapted into a media apparatus. It is tempting to consider this a symbol of Morse's failed career as a painter. As already mentioned, Morse's missionary aspirations were also transferred from painting to telegraphy. According to Morse, the new medium was to have the following effect: "The whole surface of this country would be channelled for those nerves which are so diffuse, with the speed of thought, a knowledge of all that is occurring throughout the land, making, in fact, one neighborhood of the whole country."27

This already hints at the "global village" prophesied by Marshall McLuhan 150 years later and which has become a truism today.

In fact, Morse's first primitive apparatus became the forerunner of far more complex media technologies. As the first automatic writing instrument, well before the typewriter, which would not be produced for another forty years, it began the development of machine writing that extended...
to the Telex and e-mail. The single line of his electrically guided stylus on paper was also, however, the precursor of the image drawn by magnetic deflection, which appears on the tubes of televisions and computer monitors. The beginnings of this line-by-line transmission were already contained in the first experiments in electrical image transmission, carried out ten years after Morse.28

Analogous to a primitive prototype of life, Morse’s apparatus already seemed to contain the nucleus of the entire spectrum of media technology’s technical diversification over the next century. It is all the more surprising then that Morse is entirely absent from Friedrich Kittler’s examination, the most comprehensive to date, of systems of notation.29 Here, Kittler emphasizes the dependence of literary and artistic productions on the means and devices of media technology. Yet as Morse and Daguerre paradigmatically attest, formerly artistic aims can finally be manifested in the form of media technologies and apparatuses. The primacy of the technical medium over artistic content as repeatedly postulated by Kittler is turned around in this case.

The great promise held by Morse’s recording telegraph continued even to the emergence of the computer, as the ancestor of this machine is considered to be the “analytical engine” developed almost concurrently by Charles Babbage in 1833. This project for a digital and mechanical calculating machine, however, was never realized. Not until the twentieth century did these two lines of development come together, when the synthesis of electrical signal processing and digital programming made the first functioning electronic computer possible. Yet the binary code of the dashes and dots marked on Morse’s ribbon of paper can be compared directly with Alan Turing’s “tape,” which in his first and still purely theoretical description of a computer in 1937 was the only input and output of his “universal machine.”30 Media historians have claimed various models for Turing’s “tape,” although these seem more likely to have derived from their own scientific backgrounds: the literary scholar Kittler nominated the typewriter, while the media theorist Lev Manovich, who views film as the dominant medium, claims the filmstrip.31

Yet not just technologically, but also ideologically and economically, Morse proves to be the precursor of today’s media strategies. Due to the telegraph’s privatization financed by American venture capital, the Morse system achieved a monopoly position certainly comparable to Bill Gates’ Microsoft operating system.32

A still awkward, early work by the eighteen-year-old Morse shows him together with his father, the author of the most famous American geography book at the time, looking at a globe (fig. 8). Unable to make a geographically broad impact through art, the younger Morse finally achieved this goal by means of telegraphy. A caricature in Yankee Doodle in 1846 therefore correctly noted: “Professor Morse’s Great Historical Picture” was the transformation of America through telegraphy, which left its mark on the landscape just as incisively as did the on the economy, politics, and the dissemination of news

28 The Scottish watchmaker Alexander Bain developed an “automatic copying telegraph” in 1862 for the row-by-row transmission of an image across telegraph wires, and this was followed by many similar attempts at transmitting images electrically.

29 Friedrich A. Kittler, Aufschreibsysteme 1830/1930 (Munich, 1980). The English title, Discourse Networks, does not translate the ambivalence of the title, which is derived from Sigfried Fried’s study of Daniel Schreber but also includes the history of the technologues at writing. “Inscription, in its contingent facticity and exteriority, is the irreducible giver of Kittler’s analysis, as the original German title of his book — Aufschreibsysteme — makes evident. That title, a neologism invented by Dr. Schreber, can be most literally translated as ‘systems of writing down’ or ‘inscription systems.’ It refers to a level of material deployment that is prior to questions of meaning.” David Weilberg in the introduction to Friedrich Kittler, Discourse Networks 1800/1900 (Stanford, 1990).

30 Turing’s description of the computer as a “universal machine” suggests that it was directly modeled on a telegraph device: “We may compare a man in the process of computing a real number to a machine… The machine is supplied with a tape (the analogue of paper) running through it… the machine is capable of printing 0 and 1.” Alan M. Turing, “On Computable Numbers, With an Application to the Entscheidungsproblem.” Proceedings of the London Mathematical Society, series 2, vol. 42 (1936–37) pp. 230ff. He also described a decisive role to the telegraphic transmission of writing in the test he developed in 1950 to evaluate the question “can machines think?”

32 It is just coincidence that Bill Gates is also trying to use technology to gain control of European tradition by purchasing the worldwide digital copyrights to art masterpieces in order to market them commercially over the Internet? The company Corbis, founded in 1989 by Gates, initially tried to purchase all the image copyrights for artworks in European museums.
(fig. 9). Humor was able to express what nobody dared say otherwise: that art's function as a social model could migrate to the media.34

J. L. M. DAGUERRE: PHOTOGRAPHY AS THE END OR THE PERFECTION OF PAINTING

In 1839, the announcement of the invention of photography immediately triggered a debate in France over the relationship between art and media. The arguments anticipated discussions that would later be introduced on the artistic character of film, video, or digital images in the twentieth century. Some, like art critic Jules Janin in 1839, dramatically proclaimed the end of art through photography: "There is nothing more to negotiate between art and its new rival... From now on, the Daguerrotype shall fulfill all artistic needs, and all moods of life.... If things continue as they are, then we shall soon have machines that dictate to us Molieresque comedies or verses as written by the great Corneille. And so it should be."35 On the other hand, the painter Paul Delaroche, when asked his position, saw photography only as an aid in the artist's search for motifs. The idealistic and romantic defense of human inimitability formulated by the German art critic Eduard Kolloff, who was sojourning in Paris in 1839, went even further: "The graphic arts have from the Daguerrotype... nothing to fear: its results lack the highest beauty of a work of art—the soul, the senses, and the spirit of the artist who has conceived and depicted it."36

Daguerrre, on the other hand, had previously used painting techniques to let viewers forget that what they saw had been "conceived and depicted" by an artist. He had escalated the illusionistic effects of the panel paintings in his stage designs and then in dioramas, the images of which

became as close a substitute for reality as possible. Daguerre first achieved celebrity as a theater set painter with his new stage effect, admired by "tut Paris," of a revolving sun and a wandering moon.37 He employed various transparent substrates and changing light effects in this work, which then led to the development of his dioramas in 1822. The "double effect" achieved through dynamic lighting changes added a temporal dimension to the spatial effects in his dioramas created by semitransparent canvases painted on both sides. According to contemporary descriptions, this produced "the highest possible degree of illusion," in which "life, movement and human figures which animate and complete the landscapes and monuments" also found a place.38 This anticipated in the staging of a single painted picture what film would later achieve using a sequence of images. Even before the invention of photography, Daguerre had thus taken the principle of painting to the very limits of its medium-specific boundaries. The picture became a "screen" built especially for an auditorium and was thus a precursor of the cinema—in economic terms as well, since the undertaking was now financed by admission and not by the sale of pictures (figs. 10, 11).

33 Professor Morse's Great Historical Picture, in Yankee Doodle 1, October 1846.
35 Ibid., p. 45.
37 Cf. Helmut Bernsheim and Aliston Bernsheim, J. L. M. Daguerre (New York, 1988), p. 36. This diorama was not Daguerre's invention, but rather had several precursors. Daguerre's new contribution was the "double-effect" employed in 1834.
38 Ibid., p. 34.
which finally stood just as empty as it had at the beginning. The diversity of these effects is all the more fascinating when one considers that they were achieved solely by using large blinds and colored filters to control the daylight. Sound effects supported the changing scenario, and in only fifteen minutes Daguerre simulated the course of day and night so that, as he noted in 1839, "the observer's interest was no gauge of the brevity" of the actual duration. In this, he even anticipated the accelerated time lapse of film (figs. 12, 13).

His great success permitted Daguerre to open a second diorama in London in 1823, so that the elaborate pictures, which were fourteen meters tall and twenty-two meters wide, could now be shown in two locations in succession. In this respect, the dioramas could even be compared in economic and aesthetic terms with today's IMAX cinemas. In both cases, elaborate illusions are presented in a specifically designed architecture. Yet where in film a simple cut suffices for a change of scene, with a diorama the entire theater must be turned. A mechanism allowed the auditorium to be swung between two different pictures. Thus instead of a cinematic montage, the diorama offered at most two different views per presentation in half an hour.

Even before the invention of photography, dioramas had already occupied an intermediate area between art and technology. According to a German visitor at the time, this placed it "among the most interesting productions of optics applied to the production of artistic portrayals, or if one prefers, to the art of painting aiming for optical illusion through the application of the laws of optics." As a commercial enterprise, it depended on constant innovation. Daguerre therefore did not shrink from furnishing his Mont Blanc diorama with a real Swiss mountain hut and a live goat grazing in the foreground. At presentations for the press, he had girls in traditional Swiss folk dress serve journalists a breakfast of milk, cheese, and rye bread to the sound of alpenhorns. Some public relations work was necessary to keep the 350 seats for his audiences regularly filled. Thus he did not forget to complain about the lack of recognition by art critics, who accused him of mixing nature and art, and who judged the goat and the mountain hut as "illegitimate aids for a painter." Daguerre's artistic career was more successful than Morse's, to be sure, yet he was just as much a failure in his desire for artistic recognition—not least because of his attempts to perfect illusionism, which were perceived as being not artistic.

The logical extension of Daguerre's efforts towards reproducing reality perfectly, which he was already striving for through painterly means, was the self-creating portrayal of reality through photography. The daguerreotype technique is thereby particularly persuasive because of its sharp focus, and this is precisely what almost all of his contemporaries saw as the new technique's superiority over painting. Thus, as the official presentation of the invention, the physicist François Arago said: "These drawings shall surpass the works of the greatest painters in their faithfulness to detail and atmosphere." Similarly, after his first encounter with daguerreotype, Samuel Morse said: "The exquisite minuteness of the delineation cannot be conceived. No painting or engraving ever approached it." He compared the examination of a daguerreotype through a strong magnifying glass with looking at reality through a telescope. By means of a machine-made image, Daguerre could now achieve exactly the effect he had already sought using the techniques of painting: the viewer accepted the picture as a substitute for reality.

It was certainly no accident that Daguerre's preoccupation with photography began at a time when he began experiencing financial problems due to waning interest in the dioramas. Photography's invention and its strategically skilful and promotionally effective presentation to the public provided Daguerre with a solution to this crisis in his personal career, as well as the crowning glory to his quest for fame. For seven long months, Daguerre kept the public in suspense. He had, to be sure, presented the initial results of photography at the beginning of 1839 before the Academy of Sciences, and word of this spread quickly throughout Europe. It was not until after his efforts had been financially secured through an annuity from the French government, however, that he officially made the photographic process public on August 19, 1839. The striking setting for this was an otherwise very rare collective meeting of the Academy of Sciences and the Academy of the Arts, so that eight hundred representatives from France's elite were present as the invention was made available to humanity under the name "daguerreotype." While François Arago, who chaired the meeting, still asked: "whether the photographic methods could become the object of everyday practice," it was soon seen that the general public accepted this first "public-domain" invention more quickly than had been assumed. "One hour later, all opticians' business were already besieged, and they admittedly could not produce enough instruments to cover the needs of the army of future Daguerreotypists. After only a few days, one saw cameras in all the squares of Paris, which, mounted on tripods, were being brought into position in front of churches.

39 Daguerre 1839 (see note 24), p. 60, which also includes a further contemporary description.
40 The images of the diorama remained stationary due to their size and to the complicated positioning of the lights. An illustration of the mechanism for turning the auditorium can be found in Georges Potench, Daguerre: Peintre et décorateur (Paris, 1905), p. 49.
41 Daguerre 1839 (see note 24), p. 59.
42 Gérard/Jenks 1968 (see note 37), p. 31.
43 For the landscapes of his dioramas, he often used a camera obscura, so that an article correctly emphasizes that the sketches for them were "recored on location." Ibid., p. 39.
44 Kemp 1980 (see note 34), vol. 1, pp. 48, 52.
46 Michaud et al. 1854 (see note 34), p. 15.
47 Kemp 1980 (see note 34), vol. 1, p. 55.
and palaces.\footnote{Bormhaim 1983 (see note 21), p. 41.} This contemporary report corresponds to a caricature, also from the year 1839, about the eruption of “daguerreotype mania” (fig. 14).

Within only five months, Daguerre’s description of the process had been distributed worldwide in twenty-nine editions and six languages.\footnote{Ibid., p. 65.} Due to this technique becoming common property so quickly, however, its fascination became completely disengaged from the person of the inventor. It developed further amongst a worldwide mass movement of users who were enthusiastic about the new medium both for commercial reasons as well as out of pure amateur passion. These first amateur media enthusiasts were the forefathers of a movement that has continued into the twenty-first century. It was here that the power of amateurs in shaping a medium was revealed for the first time in media history.\footnote{Cf. Daniels 2002 (see note 11), pp. 206 ff.} Further examples extend from the “bottom up” rise of radio out of the practice of amateur radio enthusiasts all the way to today’s discussions about the role of users in Web 2.0 under the slogans “We are the Web” or “Person of the Year: You”\footnote{Cf. Kevin Kelly, “We are the Web,” Wired (August 2003), as well as the title story by Lev Grossman, “Time’s Person of the Year: You,” Time Magazine (December 13, 2004) and the Spiegel special “Wir sind das Netz!,” nos. 3 (2007).}.

ARTISTIC REMNANTS IN THE TECHNOLOGICAL MEDIUM

For Morse and Daguerre, the invention of electrical telegraphy and of photography can be understood to some extent as an expansion of their artistic ambitions beyond the boundaries of art. This elaboration of a painterly approach can also be seen in the specific misunderstandings of both of them towards “their” respective media.

The reason Daguerre pursued the goal of a perfectly detailed depiction of reality in his photographic process was that he believed photography could only be successful in this way. Herein lay the difference from his precursor Nicéphore Niepce, who in 1827 had achieved the first still-shadowy photographs, and who has long since been pushed into the background of history by Daguerre. Inspired by lithography, Niepce sought a new printing process for the technical production and duplication of images. Daguerre sacrificed this reproductive characteristic of photography to his compulsion to seek the perfect illusion. The daguerreotype process produced unique images from which no further prints were possible. It was therefore not suitable for the kind of industrial reproduction of images that Niepce was striving for.\footnote{Wolfgang Kemp, Ein Essay zur Geschichte und Theorie der Fotografie (Munich 1978), p. 19.} Daguerre may well have been correct in his estimation of public opinion, as the enthusiasm for daguerreotype’s faithfulness to detail showed. Despite this, his process led to an absurdity in the history of the medium: machine-produced originals instead of reproducible graphic artworks.

The negative process developed by William H. F. Talbot contemporaneously with Daguerre allowed making as many prints as desired from a single photograph. Daguerre expressly protested, however, against the attempts to make copies by means of producing prints on paper that began soon after his process was announced.\footnote{Cf. also the contemporary commentary by Arago in Kemp 1980 (see note 34), vol. 1, p. 53, and the investigation by Bernd Busch, Beliebte Web: Ein Wahrnehmungs geschichte der Fotografie (Frankfurt am Main, 1995), pp. 161 ff.} The daguerreotype thus created an artificial form of the unique original, just as panorama painting created a unique experience in front of a non-reproducible original. A further similarity is that just like daguerreotypes, dioramas use the unaltered white of the substrate as the brightest light and depend upon daylight and changes in daylight to produce their effects.\footnote{Daguerre 1839 (see note 24), p. 61.} Thus it was precisely because of Daguerre’s desire to improve upon the perfection of the image achievable with painting that the daguerreotype, no longer in use today, led to a dead end in the development of photography.

Coming back to Morse’s first telegraph device of 1835, the inclusion of a canvas stretcher frame was a somewhat coincidental but quite symbolic remnant of its inventor’s artistic past. Traces of painting also remained in the device’s technical functioning, for it was a tele-writer in the literal sense of telegraphy, or more precisely, a remote drawing device, the pencil of which, steered by an electromagnet, drew a jagged line on a strip of paper (fig. 15). Thus Morse initially wanted to transmit information through the modulations of a continual line, analogous to the process of drawing or writing. Not until 1840 did Morse’s team achieve the reduction to a yes/no command,
meaning electricity or no electricity, which was so necessary for the function of the apparatus, whereas this so-called Morse code still had dashes and breaks of various lengths.\footnote{Morse’s contribution to the dot-dash code is disputed (Aschrott 1995 [see note 141], pp. 90, 190ff.).} It was only in 1848 that the Hamburg telegraph inspector Friedrich Clemens Gerke simplified it to the binary code of dots and dashes, precursor of all binary media information, including today’s digital code of zeros and ones (fig. 16).

Artistic elements continued to find their way even into the technical construction of the devices, and both artist-inventors misunderstood the actual capacity of their respective media invention. Instead of recognizing the principle of the unlimited reproducibility of images as the heart of his medium, Daguerre focused his method on producing originals which were superior to painting in terms of faithfulness to detail, and which remained convincing even under a magnifying glass. Morse’s first recording telegraph still strove to be analogous to handwriting instead of taking the step to binary code, which would then make it the forerunner of digital information processing. Yet at the same time, both inventions very precisely defined the division between art and media technology, which lies precisely in the person of the artist. This is revealed by the common feature of the two methods already mentioned: in the already partly automated process of producing images using a camera obscura or of transmitting communications using optical signals, both Daguerre and Morse eliminate the human factor (figs. 17, 18). Both recognized the pathway from the eye or from the thoughts, through the hand, and onto paper—and thus the true process of artistic creation—as the weak point of the media-technology transfer.

The physical action of the manual process, which holds the highest rank particularly in painting’s cult of the original, was eliminated from their respective media by the former painters Daguerre and Morse. Historically, this elimination of the artistic from media technology remains very closely connected with their artistic and personal goals. The intertwining of biography and technology, and at the same time the separation of media and the arts, can hardly be more symbolically formulated than in this contemporaneous transition. Only by eliminating the last remnants of the artistic in media technology did Morse and Daguerre achieve the worldwide fame as inventors that had been unattainable to them as artists. Their artistic means and artistic goals were transformed into processes of media technology. On two counts, the thesis can thus be formulated: media are the continuation of art by other means.

TELEGRAPHY MEETS PHOTOGRAPHY

Morse and Daguerre became heroes of the nascent media age, although they were only partly responsible for the inventions named after them. Even media technologies need heroes in order to become more comprehensible in the public consciousness. This identification with specific persons, often unjustified in terms of technological history, can also be partially understood through the artist careers of Morse and Daguerre. Among their personal similarities is a good intuition for public appeal. Although they ultimately failed as artists, they succeeded in transferring a reflection of artistic brilliance onto their roles as inventors. With this strategy, today called “image transfer,” they secured an advantage over their competitors who were simultaneously developing methods for telegraphy or photography. The next section shall examine the ways in which this relationship reversed itself in the second half of the nineteenth century, when inventors began to compete with artists to be designated as the personification of genius. Furthermore, Morse and Daguerre were very concerned to have their inventions known solely under their names and persuaded their respective associates to acknowledge this contractually.\footnote{CI. Cox 1993 [see note 17]), p. 31 on Morse’s contract with Alfred Vail as well as Gernsheim 1983 [see note 22], p. 57, on Daguerre’s contract with the son of Niepce.} This allowed them to immortalize themselves in the name of their respective media despite the controversy, even in their own time, about how unique their technical achievements had been. Thus photography was at first exclusively called “daguerreotype,” and today one still speaks of “Morse” code.
This astonishing synchronicity in their personal battles to implement their inventions finally led to a theatrical finale. Just as Daguerre was releasing examples of photographs to the public, but was still keeping his process secret in order to first secure financing for his efforts, Morse was also seeking financial backing for construction of the first telegraph line. His path led him to London and Paris—and what had to happen, did happen. On March 7, 1839, Morse met with Daguerre in order to be shown the latter’s invention as well as the diorama. 57 He invited him to return the visit the next day so he could demonstrate the principle of electrical telegraphy to him on a test line between two rooms. As if this coincidence alone were not historically significant enough, it was on precisely this same day that Daguerre’s diorama went up in flames and with it the basis of his livelihood. For Daguerre there was now no way back; he had to go from painter to photographer, and he bet everything on the success of his invention. The result was Daguerre’s sale of his secret, for an annual stipend, to the French government, which in turn made it freely available to the general public.

We do not know what Morse and Daguerre spoke about when they met, but it does not take much to imagine that the future convergence of their inventions, all the way to television and Internet, could have been in the air. In any case, Morse was enthusiastic about Daguerre’s invention. This was expressed in the report he sent in a letter to his brother, who was an editor at The New York Observer and who was the first to publish information about photography in the United States. 58 Back home, Morse went on to become one of the pioneers of American photography. Indeed, years earlier he had already experimented with a camera obscura in an attempt to create photographs. 59 The two artist-inventors remained in contact, as evidenced, among other things, by the portrait photo of Samuel Morse taken by Daguerre six years later (fig. 19).

Morse and Daguerre had to transform from artists into inventors because their goals could no longer be realized within the framework of art. Thus as inventors they achieved a place in history that had been denied to them as artists. In the end, however, they were not striving for personal prestige, but pursuing supra-individual goals which simply could no longer be formulated in individualistic works of art—for Daguerre the production of mass illusions, and for Morse the elevation of America’s prestige in comparison with that of Europe. While their inventions still contained reminders of their artistic careers, these therefore had to end for good so that everything could now be transferred to invention. 60 For Morse and Daguerre, there was no synthesis of art and media technology but only a radical transformation of what had once been goals of their art into a technical invention. Morse and Daguerre can therefore not be compared with Marcel Duchamp, Alexander Rodchenko, Walter Ruttmann, or others who gave up painting around 1920 to devote themselves to early forms of the media arts.

The continuation of art by other means, regarding the initial artistic goals of Morse and Daguerre, corresponds to a substitution of art by media technology. Because their transformation from artist to inventor is total, there is no way back and no symbiosis of art and technology. This substitution of art by media extends far beyond the personal lives of Morse and Daguerre, right into the development of media in the present day. The invented apparatus or technology is not a work of art in itself, but the activities it enables and the results it produces can take the place formerly occupied by art. This is evident in the case of media amateurs. The origin of the concept of the “amateur” is in the field of art. An amateur follows his masters by way of imitation and exercise, but ultimately only in order to understand and adore the master’s superiority. Media amateurs, beginning with photography, at first embrace the media technology as a substitute for their own lack of artistic mastership. Through the nineteenth and twentieth centuries, the attitude of the media amateurs develops with the changing media. They create their own aesthetic criteria, which no longer require any reference to the established art forms. And in the case of the radio amateurs of the early twentieth century and the hackers of the late twentieth century, this substitution of art by media takes the form of a completely new discourse that is without precedence in cultural history.

PART II: FICTION AND SCIENCE

The biographies of Morse and Daguerre prototypically anticipate a development that led to a general paradigm shift in the second half of the nineteenth century. Inventors took the place of artists as the embodiment of creative genius, and technology instead of art became the leitmotif of a new world view. However, in the creation of legends, the stylization of the personality, and the identification of authors with their creations right down to personal details, the inventor-genius type continued to follow the model established in art.

The most prominent examples of this pseudo artistic characterization of inventors are Thomas Edison and Nikola Tesla. At the same time, they represent contrasting manifestations of this paradigm shift. Edison is considered an American self-made man who made a business model from

57 Morse’s telegraphy device was presented by Arago at a meeting of the French Academy of Sciences on September 15, 1838, and thus even before Daguerre’s photography (cf. Motes 1972/1991 [see note 15], p. 157).
58 Newhall 1982 [see note 4], p. 16.
59 Gershom 1983 [see note 23], p. 112.
60 Morse wrote in 1841 that after Congress’s 1837 decision against him, he had not painted any more pictures. In 1845, during another trip in Paris, he visited neither his beloved Louvre nor any other museum (Kloss 1988 [see note 4], p. 142f). From 1837 onward, Daguerre lived in Bry-sur-Marne, where he had a new house built. It did have a studio, but one which he hardly ever used. His only important work is an illusionistic painting created in 1842 in the church in Bry, which appears to extend the church’s interior space by a gigantic Gothic choir (Porstede 1935 [see note 40], pp. 73ff).
every invention, while Tesla is seen as a financially inept, hyper-intellectual visionary. Using these two prototypes, the following shall investigate how the inventor persona was modeled on the example of artists in the second half of the nineteenth century. Thus not Edison himself, but rather a contemporary science-fiction novel about him shall be the focus of interest. In contrast, Tesla’s biography already reads like a novel. The interplay between art and technological invention, which for Morse and Daguerre was a biographical one-way street, is mirror-reversed in the way Edison and Tesla were viewed by society. Instead of failed artists who had to become inventors, it was now inventors themselves who, as pseudo artists, provided the material for fiction and utopias. Since then, this reciprocating relationship between science and fiction has continued to develop and only reached its full significance at the end of the twentieth century. The term “cyberspace,” for example, was coined in 1981 by the science-fiction author William Gibson, soon thereafter becoming the leitmotiv for numerous technical developments and research programs costing millions.

THE EMBODIMENT OF THE MEDIA:
STORAGE AND TRANSMISSION OF IMAGES AND SPEECH

With the phonograph and the telephone, the basic functions of storage and transmission simultaneously entered a new phase around 1876/77. Both media are based on physiological insights into the function of the human voice. While photography and telegraphy release the production of images and the transmission of signals from reliance upon the human body, the telephone and phonograph assume characteristics of the body and expand the body’s functions into new realms of space and time. The telephone permits one—at least acoustically—to be present at a location where the body is not. The phonograph made the same kind of presence possible in a different time. In addition, the phonograph was the first device to take over a previously exclusively human function, recalling the memory of moments in time beyond their pure description (fig. 20). With the telephone and the phonograph, technology became an enhancement and copy of human senses and the human mind, “extensions of man,” as Marshall McLuhan was to describe them a hundred years later. The two inventions therefore have epistemic prerequisites as well as consequences, and are epistemological devices in their real application and in the metaphorical sense. The principle, incontrovertible since the time of Aristotle, that a person can only be present in one place at a time, was first qualified due to the telephone, and the further consequences of this extend to the possibilities of telespheres discussed today. Even more incisive is the phonograph’s ontological quality. For the first time, the relentless passage of time, or at least its acoustic dimension, became repeatable. By turning the phonograph crank more slowly, more quickly, or in the reverse direction, time could be manipulated and even reversed. Many culturally and philosophically important things have been said about photography since its invention, but comparatively little about telegraphy. In the same way, the phonograph was immediately regarded as a cultural challenge, but the telephone, in contrast, was seen primarily as a technical and economic achievement. Of the two basic functions of media technology, storage and transmission, storage was the one more commonly understood as a cultural process. Cultural history as a physical memory of discursive knowledge and aesthetic experience established itself in the form of literature and painting before the advent of all other media technologies. By way of these two fundamental recording techniques, the difference between writing and images had also impressed itself so deeply in the cultural consciousness that it was equated with the separation between language and body. The telephone and phonograph were the first to provoke this separation. Even in its transmission through a technical medium, language became physical. The voice transports more than just symbols: it is an expression of the body and the psyche. Friedrich Kittler has illustrated how the phonograph revoked the disjunction between sounds and words, thus also rescinding the foundation for the millennia-old writing culture. Yet because the telephone and phonograph only record acoustic phenomena, a gap appears in media-related perception with respect to the body. Thus, for example, Marcel Proust writes of disembodied voices that are “invisible but present.” Not until the twentieth century was this gap closed again by television and sound film, allowing the image of the body to bridge time and space synchronously with the voice. Not until then was the separation between visual storage and verbal transmission, which had existed since the beginning of photography and telegraphy, completely overcome. Yet even in the nineteenth century, the products of technical, literary, and artistic imagination immediately began to complete this picture. This is where the novel of 1877, which shall be examined in the following, begins. Also commencing punctually in 1877 were the first publications of technical proposals for electrical television techniques as well as the first caricatures on the topic of electrical image transmission.

64 Kittler 1986 (see note 31), pp. 37-49.
65 On the phenomenology of telephoning by Proust and other authors of the nineteenth century cf. Christoph Asendorf, Ströme and Strahlen: Das Langeamtliche Verfasstwerden der Materie um 1700 (Berlin, 1989), pp. 66.
66 Thence the immediate source of this expansion of the senses was the body: in 1874 Bell and Clarke used the ear drum of a corpse to develop a prototype for a telephone receiver cf. Kittler 1986 (see note 31), II, p. 103.
By inventing the telephone and the phonograph, Alexander Graham Bell and Thomas Alva Edison became heroes of the media age, as Morse and Daguerre had been in their era. Just as telegraphy and photography were not the accomplishments of single inventors, parallel ideas for the later inventions also arose with astonishing simultaneity. The most famous case was the telephone, for which Bell presented his patent on February 14, 1876, in Washington, DC, followed only two hours later by another patent registration by Elisha Gray. As early as 1861, the teacher and amateur technician and scientist Johann Philipp Reis had introduced a telephone in Germany. He never registered it for a patent, however, because he only sought academic recognition for this epistemic device, which he nonetheless failed to receive. The relationship to telegraphy and the groundwork done by Reis may be reasons that the telephone was invented by two people simultaneously in 1876. For the phonograph, however, there were no early prototypes. It is therefore all the more surprising to find two parallel inventions here as well. The Parisian poet, inventor, and bohemian Charles Cros registered a precise description for a "method of recording and playing back phenomena which may be perceived by the ear" on April 16, 1877, at the Academy of Sciences, although this inventor's notorious lack of money prevented the practical realization of the device. On December 6, 1877, Edison presented his phonograph, which worked on the same principle, to an astonished public. He had already registered it for a patent and was preparing to produce it industrially. All that remained for Cros to do for his invention, with which he had wanted to record "beloved voices" and make the "musical dream of short hours" repeatable, was to compose a poetic memorial ending with the line: "Time wants to flee, I hold it fast." In this regard, Cros seemed particularly prone to bad luck. He had also worked out a theory for color photography through subtractive color mixing, which he published on February 23, 1869, in Le Monde, only two days after the French pianist Louis Ducos du Hauron was granted a patent for his comparable, independently developed process. The history of this remarkable simultaneity, with which ideas arise in several minds at the same time, still needs to be written.

The failure of the poet-inventor Charles Cros showed that the era of artist-inventors such as Morse and Daguerre had passed and that the future called for a pragmatic generation of inventors, of which Edison and Bell were representative, who concentrated right from the beginning on technical feasibility and commercial marketing. Hence in our perception of the era, the telephone and the phonograph, although both conceived in Europe, remain typical American innovations that quickly became the basis for new industries in the United States. As water, electricity, and gas utility networks connected the private sphere of households, at the end of the nineteenth century, the telephone and the gramophone became the first personal communication and entertainment media. On this basis, the United States continued to expand its leading role in the field of media technology, a role already established by electrical telegraphy according to Morse's system. The inferiority complex of Americans toward the cultural traditions of the Old World, which so preoccupied Samuel Morse as a painter, was replaced in the second half of the nineteenth century by Europe's technological inferiority complex toward America. The personification of the superiority of American business creativity over the old European ideals of progress through culture and science was the self-made man and tireless inventor-entrepreneur Thomas Alva Edison.

THE PHONOGRAPH: A PHILOSOPHICAL MACHINE?

The phonograph's principle of sound storage was discovered by Edison as a coincidental by-product of his work in the field of telegraphy (fig. 21). At variance with Edison's systematic strategy of developing inventions for a recognizable need in order to achieve quick commercial success, the phonograph was initially created with no clear purpose. To be sure, Edison touted the machine's "unlimited" possibilities and made every effort to support this with numerous examples. Among these uses were: singing children to sleep, recording the last words of famous men, disseminating spoken books by the millions, playing musical compositions backward, more slowly, or more quickly, or—half jokingly—recording men's professions of love so that deceived women could play them back to them later. Yet these ideas can hardly conceal the fact that the device had certainly not yet found its "killer application."

Admittedly, the phonograph initially fulfilled a very different purpose: it made its inventor world-renowned, which was not unwelcome to the entrepreneur Edison, who was very interested in publicity. Most crucial were the device's epistemic implications. The fact that the past had become reproducible triggered far-reaching speculation. The numerous reactions in the United States and even more so in Europe can be summarized in a question: If an apparatus can factually demonstrate something that had previously been impossible in the conception of the world according to Aristotelian physics—namely that the river of time can be stored, reproduced, and even played backward—does this mean that future advances in science, philosophy, physics, and physiology may be achievable through technology from now on? Did this mark a victory of apparatus-based
experimentation over the central territory of humanistic thought. Anagrams were drawn with the function of the human memory, which had previously been the sole means of storing time. "Is the brain a phonograph?" was the seriously discussed question.\(^{72}\) Yet that the phonograph was actually a philosophical machine or epistemic thing that changed humanity's view of the world just as photography had was a potential explored neither by Edison nor by anyone else in America, but by a writer of the Parisian bohemian milieu.

BOHEME AND BUSINESS: VILLIERS AND EDISON

Parallel to the announcement of the invention of the phonograph, Philippe Auguste Mathias Comte de Villiers de l'Isle-Adam decided to dedicate a leading role to its creator in his novel *The Future Eve*.\(^{73}\) This was not a topic he came across by chance, for he was a friend of precisely that ingenious inventor Charles Cros who had discovered the principle of sound recording a few months before Edison.\(^{74}\) Moreover, Cros wrote satires about contemporary technical materialism which only accepted the factual and declared the imaginary to be superfluous. This was something he had been forced to painfully experience through his own never-realized inventions. Cros' companion Villiers now made Edison, nine years his junior and whom he did not know personally, the hero of a novel. He has him express all the philosophical speculations that people in Europe contemplated in regards to the New World's technical advances. Thus in the introductory monologue, he agonizes about those sounds that are lost forever, such as the trumpets of Jericho or the words of Christ.

According to Mallarmé, Villiers had written the novel in complete distillation, "flat on his stomach on the floor of a room completely empty of furniture in the glow of a candle stump" and in the icy cold (fig. 22).\(^{75}\) As a prototype of the nobleman reduced to the rank of poor poet, whose forefathers nonetheless had conquered Paris for the Burgundians in 1418 and defended Malta in 1521 against Sultan Suleiman, he had devoted himself to the new rulers legitimized by technology. His Edison lived in a castle surrounded by the broad expanses of a protected park. Edison himself, in his functionally organized workshop in Menlo Park twenty-five miles outside of New York and which had more of a Wild-West atmosphere, could initially have hardly known anything about the honor of poetic immortalization accorded to him, especially since Villiers' novel was not published as a book until 1888. When Edison first came to Paris for the World's Fair in 1889, he was celebrated as a star and introduced to numerous monarchs, industrialists, and intellectuals. Friends of Villiers, who in the meantime had become terminally ill, tried in vain to arrange a meeting with Edison. Whether he acknowledged the copy of *The Future Eve* they had sent him in advance is not known.\(^{76}\) He evidently never mentioned the novel, for in Edison's many very detailed biographies, one searches without success for the name Villiers. As the cruel irony of fate would have it, Villiers died in complete poverty in 1889, just as Edison was courting the entire world in Paris.

THE MEDIA-TECHNOLOGY SYNTHESIS OF VILLIERS' EVE FUTURE

The ideas in Villiers' science-fiction novel were so far ahead of their time that they were not widely understood until a century later. The interchangeability of man and machine through simulation by an avatar that is just as intelligent as it is physically attractive anticipates the themes of cyborgs and cybersexes that have been popular since the 1980s.\(^{77}\) Villiers managed these astonishing foresights by looking ahead at the potential of a synthesis of storage and transmission media. Starting from the phonograph and photography, he extended the ability to record the voice to all gestures and movements of the body, and it should be noted that this was more than ten years before the invention of film. At the same time, he assumed that anything that was technically reproducible could in principle also be technically produced.

There has been some examination of the role of the phonograph in Villiers' novel, but less study of the role he imagined for telemedia. Control of the female robot named Hadaly was based on a telephonic transmission between Edison and Hadaly's invisible alter ego, the psychic medium Sowana, lying in a trance, who in turn was telepathically linked with Edison. Thus the concepts of the nineteenth-century spiritualist medium and the technical medium of the twentieth century overlapped. Yet this telematic-telepathic two-channel connection was only the first step toward Hadaly's media-technology genesis, which quickly followed her electrical leadership. Lord Ewald, a young Englishman who was just as unhappy as he was head over heels in love, allowed Edison to project the object of his affection, Alicia Clary, an American who was perfectly beautiful but unutterably

\(^{72}\) Baldwin 1995 (see note 71), p. 639.

\(^{73}\) Villiers de l'Isle-Adam, *L'Eve Future*, ed. J. Bélanger and P.-J. Castex (Paris, 1957), and in Villiers 1886 (see note 71), vol. 1. Villiers's idea for the novel went back at least to the year 1877, and after several drafts, the manuscript was completed at the end of 1879. The significance of the phonograph for the novel's inception is unclear, since before the end of 1877, the device could hardly have been spoken of in Paris, just as Edison did not become known there until 1879. Yet Villiers specified him in February 1877 as the subject of his novel (Villiers 1894 (see note 71), p. 144). In the first longer drafts, the phonograph is only mentioned in passing, while electricity is more important (Villiers 1897, p. 376). The novel's publication history is complicated and confused, after two partial publications in magazines beginning in 1886, it first appeared in complete book form in 1886.

\(^{74}\) On Cros's influence on the determination of the theme cf. Villiers 1964 (see note 71), pp. 164ff. Cros wrote with corresponding curiosicism: "J'ai réintégré, pour ma part, à l'entraînement bruyant de l'Amérique—en fait d'inventions: phonographe, photographes! Il repose, on my part, America's loud invasion—in terms of inventions: phonograph, photographs!" (Cros 1970 (see note 75), p. 64). For the phonograph, see Villiers 1886 (see note 71), p. 144.

stupid, onto the female android as a simulation. To make her voice, facial expressions, and gestures available to Lord Ewald, Alicia was put into a trance and then through the use of an acoustic and optical phonograph systematically recorded in all possible poses. The description of the procedure anticipates elements of film technology, the first rudiments of which were in fact preoccupying Edison even at that time, but which would not lead to his "kinetoscope" until ten years later. Yet because the goal of the technology imagined by Villiers was not reproduction but simulation of physical appearance, the process has actually only been realized today through the Motion Capture System, which makes it possible to store a real person's movements in order to transfer them onto a computer animation as a virtual actor. After Villiers' female android Hadaly had completely assumed Alicia's features, she was given a basic intellectual repertoire consisting of sentences, also spoken by Alicia, from some of the greatest minds in the world and which her inventor, Edison, had acquired solely for this purpose. Thus the defect of simplenessidness in the beautiful body was corrected, and Hadaly became far superior to all female robots preceding her, of the ilk of E. T. A. Hoffmann's Olimpia, admirers of whom had always to be satisfied with an ever-identical "alas.s"

MACHINE POETRY AND VIRTUAL BODIES

Villiers selected Thomas Edison to be his hero since he saw in him the exponent of a new form of imagination that was no longer satisfied with poetic fictions, but instead articulated itself in technical devices and thus led to real functions against the wondrousness of which all poetic inventions paled—at least in the judgment of his time, which was characterized by a belief in progress and positivism. Villiers attempted to respond to the competition of technology by trying to anticipate its possible consequences all the way to its final, still fictitious culmination. In the novel's key scene, upon first meeting the female android Hadaly, Lord Ewald believes her to be the intellectually matured Alicia—and even after he realizes his mistake he is willing to spend the rest of his life with this machine. The scene ends with a eulogy to the imaginary, the deep irony of which lies in the fact that it is recited by the android. Thus the Edison of the novel can finally be as "enthusiastic as a poet" about his creation.

This shows that Villiers' novel also deals with the substitution of media for art that began with Morse and Daguerre. Not until the avant-garde era at the beginning of the twentieth century did the phonograph become a feasible instrument for sound poetry freed from the written word and thus a means toward literature expanded by media instead of being its end.

Yet what type of imagination does technological progress require? According to one of Thomas Edison's notorious dictums, inventions are ninety-nine percent perspiration and one percent inspiration, but even then the question remains of where that decisive last percent comes from. In his old age, Edison wrote less pragmatically: "Inventors must be poets that they may have imagination." This certainly does not mean, however, that inventors also have to read literature. Nevertheless, the importance of science fiction as a stimulus for technical innovation is generally recognized today. Due to the difficult circumstances of its publication, Villiers' novel, however, could hardly have served as a source of inspiration for inventors of technology in its day.

Today, poetic fiction and media-technology function are hardly closer anywhere else than in precisely that field which Villiers first recognized the implications of: the embodiment of media. To name just two examples of this: William Gibson's 1996 novel Idoru describes an entity born in the Internet with the Japanese-sounding name Roi Toei. While it looks like a charming young woman, it is composed of pure information. That same year, the Japanese model and music agency HoriPro introduced the world's first virtual star, Kyoko Date, onto the market (fig. 24). Not based on any real human model, this computer-animated simulation of a pop star appeared in video clips and television shows, gave interviews, and had a fictitious biography. She maintained contact with her community of fans over the Internet, where some of her admirers are said to have fallen in love with her, and the rest at least bought her music CDs. The futurological vision and the first steps of its realization are linked in the person of the computer scientist and futurologist Ray Kurzweil. For the year 2029 he prophesies the emergence of art by machines: "Cybernetic artists in all of the arts—musical, visual, literary, virtual experience, and all others—no longer need to associate themselves with humans or organizations that include humans." As a
foretaste, he built himself a second, virtual identity in the form of a rock singer named Ramona, the computer animation of which he controlled with his own body movements during live performances, also digitally altering his own voice to a female pitch. One can also chat with Ramona in the Internet, and she will guide visitors through Kurzweil's Web site.87 Avatares like this, which partially through human control and partially by means of intelligent programs become entities with relatively complex interactional behavior, correspond in principle to the composition of Villiers's female android, for which a human psychic medium also controlled its phonographically stored patterns of behavior.

INSPIRATION INSTEAD OF PERSPIRATION: NIKOLA TESLA

In the typology of inventors, Nikola Tesla is an antipode to the American self-made man and inventor-entrepreneur Thomas Alva Edison. Tesla studied electrical engineering at the University of Graz, had a deep knowledge of mathematics and physics, and succeeded at times in combining the fundamental research of the European tradition with American business technology. He never achieved Edison's economic success, but after a short collaboration became his greatest competitor, particularly in the famous battle of the systems between Tesla's alternating current and Edison's direct current, which Tesla's scientifically supported theory ultimately won.

During his lifetime, Tesla did not become the hero of a novel, yet the facts and myths about his life nonetheless make just as exciting reading.88 He styled himself as a dandified, walking work of art. He was always elegantly dressed and lodged as a long-term resident in the best hotels. Besides leading a completely mysterious and absolute celibate private life, he had various obsessions, phobias, and neuroses, such as never using a napkin more than once or being unable to stand the presence of women with earrings. His intellectual abilities were just as legendary—from having a photographic memory to his hypnotic ability to convince potential sponsors of his projects. Although Tesla dismissed the greatly popular spiritualism and occultism of the time, his legend continues to be particularly associated with esoteric circles and conspiracy theories. The mythification in this regard exceeded common sense, at least since the 1950s, in a huge amount of pseudo-scientific Tesla literature. Tesla may have claimed to have received radio signals from Mars—although he may only have discovered radio astronomy—but now he was being stylized as the ambassador of a distant planet, who as a "Venusian" was taking care of things among us earthlings.89

Tesla's valid scientific accomplishments lay in the field of high-voltage engineering and the invention of alternating current. The flux density of electrical induction is therefore still measured in a unit called a "Tesla" to this very day. Tesla also carried out experiments with radio technology very early on—beginning around 1893—which gave rise to the ongoing debate about his or Marconi's precedence. Descriptions of Tesla's laboratory and of his experiments sound just as fantastic as those of Edison in Villiers' novel. He became world famous in his own time through his lectures and demonstrations, the sensational effects of which surpassed any magic show and made him the worthy successor of the Baroque era's electrical amusements. He surrounded his entire body with an aura of electrical flashes, for example, or allowed flames of electricity to wander like ghosts through the room.

Behind the façade of the dandy and showman-experimenter was Tesla's unique combination of an intuition that could not be rationally comprehended and his knowledge of mathematics and physics. Edison achieved most of his results through obstinate trial-and-error work, and many of his inventions were based on clever combinations of already-known patents. In contrast with Edison's famous dictum that inventions were ninety-nine percent perspiration and one percent inspiration, Tesla conceived of his inventions in a flash of intuition that can only be compared with divine inspiration, artistic genius, or paranormal delusion.90

All three of these elements can be found in his biography. Tesla was born the son of an orthodox clergyman and was supposed to follow in his father's footsteps. In his youth, he had seen sudden apparitions accompanied by strong flashes of light, and perceived intensive synaesthetic connections between objects and words. He according to his own accounts, Tesla wrote poetry throughout his life, but because he considered it too personal, he never had it published.91 He is said to have surprised friends by reciting poetry in their respective mother tongues, be it English, French, German, or Italian.92

Tesla's essays in scientific, technical, and popular magazines are distinguished by literary style, and they are more likely to concern philosophical questions than just dry facts. Because they stemmed from an acknowledged researcher but touched upon subjects completely beyond the scope of technology, they were an eminent source of inspiration to his contemporaries. In the text "The Problem of Increasing Human Energy," published in 1900 in the widely circulated Century Magazine, he described in Faustian style a cosmic panorama of human history, ending this with a poem by Goethe. Soundly based and from today's point of view, completely correct prophecies, such as the production of aluminum airplanes, global wireless communication, or the development of artificial intelligence, appeared there in the context of his far-reaching metaphysical speculations. The text delineates a whole philosophy of life, extending from hygiene to war and peace, and

87 www.kurzweilAI.net
88 The details are from the biography by Margaret Cheney. Tesla: Man out of Time (Englewood Cliffs, 1981), and that by Tesla's contemporary John O'Neill, Tesla (Frankfurt am Main, 1997). A comprehensive and reliable biography about Tesla is unfortunately not yet available.
89 As stated in 1959 in the biographical novel Return of the Dove by Margaret Storm O'Cheyne 1983 (see note 88), p. XIII.
90 In his obituary in the New York Times Tesla wrote: "His method was inefficient in the extreme, for an immense ground had to be covered to get anything at all unless blind chance intervened and, at last, I was almost a sorry witness of his doings, knowing that just a little theory and calculation would have saved him 90 per cent of the labor. But he had a vivid contempt for book learning and mathematical knowledge, trusting himself entirely to his inventor's instinct and practical American sense."
91 Nikola Tesla, Lectures, Papers, Articles (Belgrade, 1954), p. 4-120.
93 The only bibliographical trace of this poetic passion is Tesla's introduction to and translation of poetry by the Serbian poet Zmaj Joseph Jasavaci, in which he emphasizes the role of poetry as the savior from despair. Zmaj Jovan Jasavac, Songs of Liberty and Other Poems (New York, 1897).
from ecology through sexual morals to religion. The solutions that Tesla offers to all of these questions always appear with the aspiration of being ultimately justifiable in positivist, scientific terms. Thus he makes the sweeping statement that all movements of nature, including human life, must be rhythmic. In doing so, Tesla's wish is also to provide a metaphysical justification for alternating current: "Man, however, is not an ordinary mass, ... his mass, as the water in an ocean wave, is being continuously exchanged, new taking the place of the old." Long before all scientific analysis, Goethe had comparably described electricity in a romantic-epic sense as the "soul of the world." While such universalistic imagery promoted the popular success of Tesla's theses, they nonetheless caused lasting harm to his scientific credibility.

Even more drastic was Tesla's own description of a synthesis of poetry, delusional intuition, and real scientific innovation:

On one occasion, ever present in my recollection, we were enjoying ourselves in the City Park. I was reciting poetry, of which I was passionately fond. "Sie rückt und weicht, der Tag ist überlebt, Da eilt sie hin und fordet neues Leben, Oh, dass kein Flügel mich von Boden hebt ihr nach und immer nach zu streben! Ach, zu des Geistes Flügeln wird so leicht kein körperlicher Flügel sich gesellen!" As I spoke the last words, plunged in thought and marveling at the power of the poet, the idea came like a lightning flash. In an instant I saw it all, and I drew with a stick on the sand the diagrams which were illustrated in my fundamental patents of May, 1888.

Thus, according to his own account, the inspiration came to him for his most important of his numerous three-phase current engine patents while reciting a Faust monologue in German. Even during his lifetime, however, Tesla strictly dismissed all paranormal phenomena, wholly unlike Edison, who even in the 1870s unsuccessfully attempted to propose an "etheric force," a crude mixture between the anticipation of wireless telegraphy and spiritualist influences. In fact, Edison was a member of the theosophical society of Madame Blavatsky at that time—thus a simple comparison of the pragmatist Edison and the visionary Tesla is not enough to explain their differences.

Crucial to an understanding of Tesla is his parareligious and poetic dimension. For him, science and technology were morally founded, and according to his own statements, this led him back to the Christian roots of his childhood. In Tesla's manifesto at the turn of the century, visions and knowledge combined into an amalgamation of a poetically evoked technoreligion that at the same time laid claim to absolute positivist truth, and in this respect it can be compared with Scientology. As a result of the publication of this text, in which he introduced his world energy transmitter, he was able to find a financial backer for the project. In the same year and with the support of the most powerful banker in America, J. Pierpont Morgan, Tesla began construction of the large transmitter tower on the Long Island property he had named "Wardenclyffe" (fig. 25). In 1904, he summarized the aims he was pursuing with this project as follows:

"World telegraphy ... will prove very efficient in enlightening the masses, particularly in still uncivilized countries and less accessible regions, and ... will add materially to general safety, comfort, and convenience, and maintenance of peaceful relations. It involves a number of plants, all of which are capable of transmitting individualized signals to the uttermost confines of the earth. Each of them will be preferably located near some important center of civilization, and the news it receives through any channel will be flashed to all points of the globe. A cheap and simple device, which might be carried in one's pocket may be set up anywhere on sea or land, and it will record the world's news or such special messages as may be intended for it. Thus the entire earth will be converted into a huge brain, capable of response in every one of its traits."

Such prophecies made Tesla a shining example for the next generation of radio inventors, such as Lee De Forest and Reginald Fessenden.

Yet Tesla's world transmission tower ended on a less utopian note. It was not supposed to radiate Hertzian radio waves, but to disseminate messages by modulating high-frequency electrical vibrations, the resonances of which were to spread across the globe. In line with Tesla's credo of the universality of rhythm, he also foresaw the ability to transmit large amounts of electrical energy in this manner throughout the entire world. Before it ever became quite clear what actually happened in the tower or how its technical function had been conceivably, criticism multiplied about Tesla's grandiose plans. His obstinate claims that wireless telegraphy would not be based on Hertzian waves also contributed to the undermining of his scientistic reputation. But above all,
Marconi's transmission across the Atlantic of the three 'dots' of the letter 's' using far simpler means in the year 1901 was the signal for Tesla's financial backer that something was awry with Tesla's plans. Thus due to a lack of further funding the tower remained an imposing ruin. After years of disuse it was finally demolished in 1917. Its value as scrap paid the accrued hotel bills for its creator's long-term residence in New York's Waldorf Astoria. Tesla became a mockery in the press, and his career as an inventor was over.

By returning to his childhood roots, the inspirations and visions of the poet and preacher Tesla finally exceeded his own scientific capacity as well as those of his era. His fate can be summarized against his contemporary background as follows: where science and fiction remain separated in the case of the two protagonists Edison and Villiers, they form a hybrid identity in Tesla's person in a manner just as fascinating as it was ruinous. His prophecies about the functioning of the tower as a "magnifying transmitter" even escalated in various articles after the project’s inglorious end; to the worldwide transmission of music and images, he then added a global, wireless navigation system and a constant time-signal transmission for clocks. None this would be fulfilled, however, until a hundred years after Tesla's "world system," in the illustration of which he lapsed more and more into the technological mythification of universal vibrations. While this mixture of prophecy, poetry, and technology led to his bankruptcy, his futuristic visions were nonetheless just as momentous as his actual inventions.

Today, Tesla's popularity in various fields of culture significantly exceeds his scientific legacy. In contemporary media art, his inventions serve as an inspiration just as much as his utopias and legends. The spectrum ranges from Marko Lulic's reenactments of the famous—but fake by means of double exposure—photos showing Tesla surrounded by flashes of electricity in his laboratory, to Jan Peter R. Sonntag's zonArc'tion installations and performances with high-tension plasmas and Tesla coils, as well as the tesla medien kunst labor (Tesla Laboratory for Media Art, 2005–07), which has dedicated itself to the production and presentation of media art in Berlin. As the most notorious inventeur maudit, Tesla has become part of popular culture. He has featured in several fiction motion pictures; the most famous actor in the role of Tesla being David Bowie. A hard-rock band from Sacramento, California, call themselves "Tesla," and a Tesla theme park has been opened in his native Croatian village of Smiljan.

Translated from the German by Sean Gallagher

* Parts of this essay have been published in Dieter Daniels, Kunst als Sendung: Von der Telegrafie zum Internet (Münich, 2002).